A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis
نویسندگان
چکیده
With the development of the condition-based maintenance techniques and the consequent requirement for good machine learning methods, new challenges arise in unsupervised learning. In the real-world situations, due to the relevant features that could exhibit the real machine condition are often unknown as priori, condition monitoring systems based on unimportant features, e.g. noise, might suffer high falsealarm rates, especially when the characteristics of failures are costly or difficult to learn. Therefore, it is important to select the most representative features for unsupervised learning in fault diagnostics. In this paper, a hybrid feature selection scheme (HFS) for unsupervised learning is proposed to improve the robustness and the accuracy of fault diagnostics. It provides a general framework of the feature selection based on significance evaluation and similarity measurement with respect to the multiple clustering solutions. The effectiveness of the proposed HFS method is demonstrated by a bearing fault diagnostics application and comparison with other features selection methods. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملIntelligent application for Heart disease detection using Hybrid Optimization algorithm
Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...
متن کاملBall Bearing Fault Diagnosis Using Supervised and Unsupervised Machine Learning Methods
This paper deals with the approach of using multiscale permutation entropy as a tool for feature selection for fault diagnosis in ball bearings. The coefficients obtained from the wavelet transformation of the vibration signals of the bearings are used for the calculation of statistical parameters. Based on the minimum multiscale permutation entropy criteria, the best scale is selected and stat...
متن کاملA Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement is still desirable to improve upon existing fault diagnosis techniques. Vibration acceleration s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011